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Abstract: The occurrence of obesity and related metabolic disorders is rising, necessitating effective
long-term weight management strategies. With growing interest in the potential role of gut microbes
due to their association with responses to different weight loss diets, understanding the mechanisms
underlying the interactions between diet, gut microbiota, and weight loss remains a challenge. This
study aimed to investigate the potential impact of a multiphase dietary protocol, incorporating an
improved ketogenic diet (MDP-i-KD), on weight loss and the gut microbiota. Using metagenomic
sequencing, we comprehensively analyzed the taxonomic and functional composition of the gut
microbiota in 13 participants before and after a 12-week MDP-i-KD intervention. The results revealed
a significant reduction in BMI (9.2% weight loss) among obese participants following the MDP-i-KD
intervention. Machine learning analysis identified seven key microbial species highly correlated
with MDP-i-KD, with Parabacteroides distasonis exhibiting the highest response. Additionally, the
co-occurrence network of the gut microbiota in post-weight-loss participants demonstrated a healthier
state. Notably, metabolic pathways related to nucleotide biosynthesis, aromatic amino acid synthesis,
and starch degradation were enriched in pre-intervention participants and positively correlated with
BMI. Furthermore, species associated with obesity, such as Blautia obeum and Ruminococcus torques,
played pivotal roles in regulating these metabolic activities. In conclusion, the MDP-i-KD intervention
may assist in weight management by modulating the composition and metabolic functions of the gut
microbiota. Parabacteroides distasonis, Blautia obeum, and Ruminococcus torques could be key targets for
gut microbiota-based obesity interventions.

Keywords: gut microbiome; multiphase-modified ketogenic diet; weight loss; metagenomics;
machine learning

1. Introduction

Obesity is considered a global health issue that not only affects the quality of life
through depression, illness, and disabilities but also reduces life expectancy because it
is associated with higher all-cause mortality [1,2]. The last few decades have witnessed
an alarming surge in obesity and its associated metabolic disorders. Globally, approxi-
mately two billion adults are considered overweight, of which almost half are obese [3,4].
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Current approaches to obesity primarily involve lifestyle interventions [5], with dietary
interventions being widely regarded as one of the most promising avenues for weight
management [6]. While such interventions often yield short-term success, weight regain is
almost inevitable [7]. Novel weight management strategies are still in demand.

Current research has demonstrated substantial disparities in gut microbiota composi-
tion between obese individuals and those with normal weight and that the gut microbiome
plays a crucial role in host energy metabolism [8–10]. The human gut microbiota affects the
body’s nutrient acquisition, energy expenditure, and several metabolic pathways, owing
to a wide spectrum of metabolites, including bile acids, amino acids, short-chain fatty
acids, indole derivatives, tryptophan, and trimethylamine N-oxide [11–14]. Furthermore,
alterations in the gut microbiota can modulate the efficacy of dietary interventions, under-
scoring the potential benefits of fine-tuning the gut microbiota [15–17]. However, the extent
to which different interventions impact the gut microbiota varies [7], and research investi-
gating the intricate interplay between dietary interventions, obesity, and gut microbiota
at the species level and microbial functional composition is still limited. Identifying key
responsive species and critical microbial functions in promoting dietary intervention for
obesity management remains a valuable avenue for further exploration. In this context, it
is worth noting that metagenomic shotgun sequencing, in conjunction with bioinformatics
tools, offers an enhanced means to characterize the microbiota [18]. This approach enables
a more precise prediction of the biological features of microorganisms and their potential
influence on host physiology [19].

In dietary interventions for obesity, low-carbohydrate or very low-carbohydrate keto-
genic diets (KDs) have gained popularity in weight management [20]. These diets induce
metabolic adaptations, utilizing fatty acids and ketogenic amino acids instead of carbohy-
drates as the primary energy source, producing ketone bodies as a molecular byproduct and
resulting in ketosis [21]. Despite numerous studies demonstrating the efficacy of ketogenic
diets in promoting weight loss in humans over the years [22–24], their underlying mecha-
nisms are not yet fully understood [25]. Research has indicated that the ketogenic diet also
modulates the subjects’ immune responses through the mediation of gut microbiota, as
evidenced in a ketogenic diet intervention study involving 17 overweight or grade I obese
nondiabetic men, where a significant reduction in the relative abundance of Bifidobacterium
was observed following the ketogenic diet intervention [26]. Both in vitro and in vivo ex-
periments showed that ketogenic diet-induced β-hydroxybutyrate selectively inhibited
the growth of Bifidobacterium, consequently reducing intestinal proinflammatory Th17
cell levels, demonstrating a causal role of gut microbiota in mediating the host’s immune
response to diet [26]. These studies provide valuable insights into the interplay among
obesity, ketogenic diets, and gut microbiota, but further research is needed to expand our
understanding of how different types of KD affect the gut microbiota.

Therefore, we conducted pre- and post-intervention fecal gut microbiota species-level
and functional compositional analyses of the MDP-i-KD, a safer variant of the traditional
ketogenic diet. We aimed to identify specific microbial species and metabolic functions
closely associated with the weight reduction induced by ketogenic diet interventions.
Given the intricate interplay among species within the human gut microbiota, hypothesis
testing methods may not be entirely suitable for human gut microbiota research, as they
assume interdependence among microbes [27]. Therefore, we employed machine learning
approaches, allowing for multivariate and nonlinear analyses, to more accurately identify
species crucial for obesity treatment in the MDP-i-KD intervention. Furthermore, we
correlated obesity traits with specific gut metagenomic species and microbial functions to
elucidate the interactions among obesity, diet, and the human gut microbiota. This study
offers insights to support future microbiome-based weight management interventions, thus
enabling personalized treatments to better achieve long-term weight management goals
for individuals with obesity.
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2. Materials and Methods
2.1. Subjects

The study protocol was approved by the hospital ethics committee (KYLKS 201806)
and registered with ClinicalTrials.gov (ChiCTR180001523). Thirteen patients with obesity
were recruited from The Affiliated Wuxi People’s Hospital of Nanjing Medical University.
Inclusion criteria comprised: (1) age range of 18–65 years, (2) BMI ≥ 28 kg/m2, and
(3) stable body weight over the preceding three months. All participants had signed an
informed consent form. Detailed information regarding the study design, exclusion criteria,
and dietary specifics has been previously reported [28].

All participants began with a 4-week hypocaloric balanced diet (HBD) as an introduc-
tory period, followed by a 12-week MDP-i-KD intervention consisting of two cycles of the
same “2 + 2 + 2” dietary regimens (Supplementary Material Figure S1): two weeks of KD,
followed by two weeks of a carbohydrate-based transition diet (TD), and finally two weeks
of an HBD. The nutrient limits observed at each stage are listed in Supplementary Material
Table S1. In addition, the registered dietitian developed a range of food choices for each diet
phase for the subjects’ reference (Supplementary Material Tables S1 and S2). During the
KD phase, morning urine ketone results for all participants showed that they had entered a
state of ketosis.

Each subject also performed aerobic and resistance exercises. This component was de-
scribed in detail in our previous study [28]. During the experiment, the dietitian monitored
the patients’ dietary information, weight data, and the presence of adverse effects in the
form of pictures and text reports.

2.2. Anthropometric Assessment and Blood Chemistry

Before and after the MDP-i-KD intervention, anthropometric assessment and blood
biochemical indicator detection were carried out for obese subjects. The detailed detection
indicators and details are clarified in the research of Yuan et al. [28].

2.3. Sample Collection

All subjects were instructed to collect fecal samples using sterile collection tubes and
to collect stools once before the start of the KD intervention and once after the end of the
MDP-i-KD, respectively. Collected stools were mixed with 15% glycerol and frozen at
−80 ◦C and were used for metagenomic analysis.

2.4. Metagenomic Data Processing and Quality Control

Metagenome sequencing was performed on the Illumina NovaSeq 6000 platform
(Illumina Inc., San Diego, CA, USA) of Shanghai Meiji Biomedical Technology Co., Ltd.
(Shanghai, China) The 26 samples submitted for examination were stool samples of 13 sub-
jects who received the MDP-i-KD at 0 and 12 weeks of intervention. The average sequencing
amount of the 26 samples was 49.2 ± 4.4 (mean ± standard deviation) million reads. The
preprocessing of the original sequence includes the following procedures: Trimmomatic
(version 0.39) was employed to filter low-quality sequences [29]. Sequences with an average
base quality score below 30 were trimmed, and sequences longer than 60 bp after filtering
were retained as a quality-controlled output. Subsequently, filtered sequences were aligned
to the human reference genome (Homo sapiens genome assembly GRCh38, hg38) using
BWA (version 0.7.17), Samtools (version 1.9), and BEDTools (version 2.30.0), effectively
removing host-origin genes from the samples [30–32]. After the above quality control, an
average of 37.1 ± 3.8 (mean ± standard deviation) million reads were retained per sample.

2.5. Analysis of Gut Microbiota Species and Functions

The high-quality sequences post-quality control were subjected to taxonomic and
functional annotation using MetaPhlAn3 and HUMAnN3, respectively [33]. Notably, HU-
MAnN3 utilized merged paired-end data for annotation and subsequently normalized
the obtained counts to relative abundance values. The stratified information for individ-
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ual bacterial functional contributions was derived from the normalized abundance data
of metabolic pathways. Visualization of bacterial contributions to individual metabolic
pathways was achieved using the humann_barplot script. Species abundance information
tables were used to calculate alpha diversity metrics. Beta diversity was calculated using
the Bray–Curtis metric. Linear discriminant analysis effect size (LEfSE) was used to identify
bacterial taxa driving differences before and after the MDP-i-KD [34]. For the construction
of the bacterial co-occurrence network, species with a relative abundance of less than 0.01%
were excluded. Spearman correlation analysis was performed on bacterial correlations
before and after the MDP-i-KD. Only strong correlations (r > |0.6| and p < 0.01) were
considered and visualized by Gephi 0.9.2.

2.6. Machine Learning Analysis

Metagenomic species’ ability to classify two states before and after the MDP-i-KD
intervention was assessed using machine learning methods. The area under the ROC
curve (AUC) served as the model evaluation metric. Feature selection was performed on
the original dataset using seven methods, including univariate ANOVA (f_classif, FC),
mutual information estimation, and model-based approaches like Random Forest (RF),
Gradient Boosting (GB), XGBoost (XGB), LightGBM (LGB), and L1 Regularization (L1) [35].
Model-based feature selection retained features with importance scores greater than 0.001.

The obtained feature subsets from each selection method were applied to individual
classifiers. To mitigate random errors, we conducted five-fold cross-validation ten times
and utilized the area under the curve (AUC) score as the evaluation metric to select the
feature subset and corresponding model with the best classification performance. Finally,
the SHapley Additive exPlanations (SHAP) package (0.42.1) was employed to calculate the
SHAP value of each feature within the subset [36], revealing their importance and impact
on classification.

2.7. Association Analysis of Gut Microbiota and Physiological Indicators

Correlation analysis between species was conducted and we identified physiological
indicators of obese subjects before and after intervention. The relative abundance of bacteria
species with a mean relative abundance greater than 0.1% in 20% of the samples before and
after the multi-stage ketogenic diet intervention was compared with the weight, BMI, waist
circumference, hip circumference, waist-to-hip ratio, body fat, body fat percentage, and
internal organs of obese subjects. Spearman correlation analysis was performed on the fat
area. The correlation coefficient was −0.35 < r < 0.35, p < 0.05.

2.8. Differential Analysis of Metabolic Pathways of Gut Microbiota

To identify the key gut microbiota metabolic pathways that exhibited significant
changes before and after the MDP-i-KD intervention, the Wilcoxon rank-sum test was
performed using the Wilcox.test function of the R language to analyze the metabolism
of the gut microbiota with significant differences before and after the intervention path-
way, and we calculated the Log2 Foldchange of the metabolic pathway before and after
the intervention.

2.9. Correlation Analysis between Metabolic Pathways of Gut Microbiota and Physiological Indicators

In order to explore the metabolic pathways that were significantly changed before
and after the MDP-i-KD, an association analysis between the metabolic pathways and the
physiological indicators of obese subjects was carried out. Spearman correlation analysis
was performed between the metabolic pathways existing in 20% of the samples before and
after the intervention and the body weight, BMI, waist circumference, hip circumference,
and waist-to-hip ratio of obese subjects, and the correlation coefficient was −0.4 < R < 0.4,
p < 0.05 correlation.
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2.10. Statistical Analysis

A statistical analysis of clinical physiological indicators was applied to measure the
effect of weight loss in the MDP-i-KD and was analyzed using the paired Wilcoxon rank-
sum test. Values are expressed as mean ± SD or n (%). Spearman correlations were
calculated using the corr.test function (a function of the psych package in R). The Wilcoxon
rank-sum test was performed using the Wilcox.test function of the R statistical package to
analyze the metabolic pathways with significant differences between the gut microbiota
before and after the intervention. When p < 0.05, the results were statistically significant.

3. Results
3.1. MDP-i-KD Changes Biochemical Measurements and Anthropometric Characteristics of Obese
Subjects

Before the intervention with the ketogenic diet, the average BMI of 13 subjects (62% male
and 38% female) was 31.0 ± 2.6 kg/m2, and the average body weight was 86.6 ± 14.7 kg.
After 12 weeks of treatment, there was a significant weight loss of 8.2 ± 2.5 kg, and the
average body weight of the subjects decreased by 9.4% when compared to that before
the intervention. Notably, BMI (p = 0.0002), waist (p = 0.0017), hip (p = 0.0016), systolic
blood pressure (p = 0.0118), blood pressure (p = 0.0291), AST (p = 0.0357), ALT (p = 0.0134),
Triglyceride (p = 0.0.0081) and HbA1c (p = 0.0058) all showed significant decreases after
the MDP-i-KD. In addition, we observed that the total cholesterol concentration did not
significantly change. Before and after the intervention, the LDL cholesterol concentration
did not change significantly, but the HDL cholesterol concentration increased (Table 1). The
MDP-i-KD intervention did not significantly affect BUN, creatinine, albumin, UA and ALP
levels (Table 1).

Table 1. Anthropometric assessment and biochemical measurements of participants before and after
the intervention.

Characteristic Before After p-Value Change

Body composition
Bodyweight, kg 86.6 ± 14.7 78.4 ± 13.2 0.0017 −8.2 ± 2.5
BMI, kg/m2 31.0 ± 2.6 28.1 ± 2.3 * 0.0002 −2.9 ± 0.8
Waist, cm 99.3 ± 10.0 91.9 ± 8.9 0.0017 −7.3 ± 3
Hip, cm 105.4 ± 5.0 100.2 ± 5.2 * 0.0016 −5.2 ± 1.7

Blood pressure, mm Hg
Systolic 132.3 ± 14.1 123.5 ± 14.8 0.0118 −8.8 ± 10.6
diastolic 78.4 ± 11.5 72.4 ± 11.2 0.0291 −6.0 ± 10

Liver function, U/L
AST 26.5 ± 10.3 21.2 ± 5.8 0.0357 −5.2 ± 7.3
ALP 78.4 ± 26.4 84.0 ± 37.0 0.4214 5.6 ± 18.8
ALT 41.9 ± 30.7 27.5 ± 22.7 0.0134 −14.4 ± 19.5

Renal function
Albumin, g/L 48.3 ± 1.3 46.6 ± 2.1 0.0645 −1.7 ± 2.5
BUN, mmol/L 4.7 ± 1.5 5.3 ± 0.8 0.0803 0.6 ± 1.5
Creatinine, µmol/L 71.5 ± 13.6 72.0 ± 13.2 0.7869 0.5 ± 5.0
UA, µmol/L 452.35 ± 29.73 438.05 ± 22.19 0.4973 −14.3 ± 37.10

Lipids, mmol/L
Total cholesterol 5.2 ± 0.9 5.2 ± 0.9 0.6848 0.0 ± 0.8
LDL cholesterol 3.4 ± 0.8 3.4 ± 0.9 0.5292 −0.1 ± 0.7
HDL cholesterol 1.0 ± 0.2 1.1 ± 0.2 0.1259 0.1 ± 0.2
Triglyceride 2.3 ± 2.1 1.5 ± 0.7 0.0081 −0.9 ± 1.6

HbA1c [%] 5.4 ± 0.5 5.0 ± 0.4 * 0.0058 −0.4 ± 0.5
Abbreviations: BMI, body mass index; AST, aspartate transaminase; ALP, alkaline phosphatase; ALT, alanine
aminotransferase; BUN, blood urea nitrogen; UA, uric acid; LDL, low-density lipoprotein; HDL, high-density
lipoprotein; HbA1c, hemoglobin Alc. A Wilcoxon signed-rank test was used: * p < 0.05.
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3.2. Effect of the MDP-i-KD on Gut Microbiota

Based on the results of observed OTUs (Figure 1A), Pielou’s evenness (Figure 1B),
the Shannon index (Figure 1C), and the Simpson index (Figure 1D), an assessment was
made regarding the impact of the intervention on the species richness and diversity of
the gut microbiota. The results indicated that none of the four diversity indices exhibited
significant changes. Specifically, observed OTUs demonstrated a slight increase after the
intervention, whereas the Pielou, Shannon, and Simpson indices all displayed a decreasing
trend post-intervention. The increase in observed OTUs indicates a certain expansion in the
variety of species within the gut microbiota after the intervention. However, the declines in
the Pielou, Shannon, and Simpson indices signify reduced evenness in species distribution
and decreased overall diversity in the gut microbiota. These findings suggest a potential
dominance shift among certain microbial species post-intervention, resulting in heightened
unevenness and decreased overall gut microbiota diversity. In addition, the beta diversity
calculated by the Bray–Curtis distance did not have significant changes before and after
the intervention (Figure 1E).
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Figure 1. Effect of the MDP-i-KD on gut microbiota. Alpha diversity was assessed using several
metrics: (A) observed OTUs, (B) Pielou’s evenness, (C) Shannon index, (D) Simpson index (NS.:
p > 0.05). D0: before the intervention, D12: after the intervention; (E) Beta diversity. (F) LEfSe analysis
identified the microbes with significant differences in abundance before and after the intervention
(LDA score > 2, p < 0.05).

LEfSe analysis was used to identify six species that were significantly enriched post-
intervention (D12 group): Bacteroides nordii, Streptococcus infantarius, Lactococcus petauri,
Parabacteroides distasonis, Bacteroides ovatus, and Klebsiella variicola. A significant reduction
in Actinomyces odontolyticus was observed after the intervention (Figure 1F). The above
results suggest that the MDP-i-KD intervention was able to alter the gut microbiota of
the participants.

3.3. Machine Learning Identifies Key Microbial Changes before and after MDP-i-KD Intervention

Machine learning analysis was conducted on metagenomic species-level data to in-
vestigate the main microbial features affected by the MDP-i-KD intervention. Seven fea-
ture selection methods were used to filter potentially redundant features for each model
to reduce data dimensionality and improve classification performance. The GB and L1
methods effectively reduced features without compromising model classification perfor-
mance. Specifically, the GB model identified a small subset of seven key features, including
Parabacteroides distasonis, Weissella cibaria, Eisenbergiella tayi, Bacteroides vulgatus, Oscillibacter
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sp_57_20, Bacteroides thetaiotaomicron, and the Enterobacter cloacae complex. This subset
achieved the best classification performance, with an AUC of 0.838 in GB (Figure 2A).

Parabacteroides distasonis

Weissella cibaria

Eisenbergiella tayi

Bacteroides vulgatus

Oscillibacter sp_57_20

Bacteroides thetaiotaomicron

Enterobacter cloacae complex

Oringin MI GB XGB RF L1

F

Anova

(A)

D12D0

(B)

Figure 2. Machine learning identifies key microbial changes before and after MDP-i-KD intervention.
(A) Impact of various feature selection methods on the performance of different models (evaluation
metric is AUC). (B) Feature interpretation of the contribution of the seven features in the GB model to
pre- and post-intervention state classification using SHAP analysis.

Based on the GB classification model, we ranked the relative importance of the SHAP
values for the seven feature species. P. distasonis was identified as the most crucial species
in distinguishing the pre- and post-intervention states of the MDP-i-KD. The Wilcox test
confirmed a significant increase in its relative abundance after the intervention (Supple-
mentary Material Figure S2A). Other feature species selected through the GB model did
not exhibit significant changes in relative abundance before and after the intervention,
indicating a low perturbation of effect values, determined by changes in their relative
abundance (Supplementary Material Figure S2B–G).

Among the above characteristics, the relative abundance of P. distasonis, the most
critical microbial feature, increased significantly after the intervention. Previous studies
have identified a decrease in the abundance of P. distasonis in obese and metabolic syndrome
populations [37,38]. Additionally, other studies of dietary interventions for treating obesity
have shown an upward trend in the relative abundance of P. distasonis after the intervention.
For example, in clinical trials with Mediterranean or low-fat, high-complex-carbohydrate
diets for obesity treatment, the relative abundance of P. distasonis increased significantly
one year after consumption [39].

Furthermore, our findings suggest an upward trend of B. vulgatus and B. thetaiotaomi-
cron after the intervention. Recent studies have suggested a cross-feeding between B. vulga-
tus and Akkermansia muciniphila, positively influencing obesity reduction [40]. Additionally,
other studies found a significant decrease in the abundance of B. thetaiotaomicron in indi-
viduals with obesity, and gavage with B. thetaiotaomicron protected mice from obesity [41].
These results underscore the potential importance of B. vulgatus and B. thetaiotaomicron in
regulating obesity during the MDP-i-KD.

3.4. Species-Level Co-Occurrence Network Changes after the Intervention

To evaluate the response of microbial interactions to the MDP-i-KD, we constructed
co-occurrence networks filtered using the following criteria: strong correlation (|r| > 0.6)
and p-value < 0.01. Prior to the intervention, a total of 722 positive and 38 significant
negative correlations were observed between the 299 species of participants (Table 2). Post-
intervention, on the other hand, 885 positive and 16 significant negative correlations were
observed between 318 species (Table 2).
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Table 2. The topological features of the network.

Variable D0 D12

Number of edges 760.000 901.000
Number of positive edges 722.000 885.000
Number of negative edges 38.000 16.000

Number of vertices 299.000 318.000
Average degree 5.084 5.667

Average path length 2.867 2.395
Diameter 8.000 10.000

Average clustering coefficient 0.905 0.920
Centralization degree 0.036 0.028

Modularity 0.941 0.888
Number of modularity 141.000 138.000

D0: before the intervention; D12: after the intervention.

We calculated the topological features of each node in the networks (Table 2). When
comparisons were made between the two networks, it was found that the average clustering
coefficients in the species-level co-occurrence networks increased from 0.905 to 0.920 due
to the MDP-i-KD, which indicates a transition of species interactions to a more complex
microbial network after the intervention. Using the modularity algorithm in the Gephi
software, we clustered the closely linked nodes, and the nodes in different categories were
marked differently and shown in different colors. Three major subclusters with a node
count greater than ten were found in the D0 network, whereas six major subclusters with a
node count greater than ten were found in the D12 network (Figure 3). While the number
of modularizations decreased from 141 pre-intervention to 138 post-intervention, there was
an increase in the number of subclusters containing more than 10 nodes and an overall
expansion in the number of nodes within these subclusters post-intervention. These results
suggest that the interactions at the species level of the gut microbiota within each subcluster
are more complex and concentrated after the MDP-i-KD intervention.
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Figure 3. Species-level co-occurrence network changes after diet intervention. Each node was
labeled by the corresponding species. A connection represents a strong (|r| > 0.6) and signifi-
cant (p-value < 0.01) correlation. Nodes sharing the same color represent identical modules, while
node size corresponds to their betweenness centrality scores. Dashed boundaries highlight alter-
ations in interactions among obesity-related species pre-and post-intervention, (A) Blautia obeum
module; (B) Prevotella copri module; (C) Blautia producta module; (D) B. thetaiotaomicron module;
(E) E. tayi module.
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In Figure 3, dashed boundaries highlight alterations in interactions among obesity-
related species pre-and post-intervention. In module A, interactions involving Blautia obeum
were lost after the intervention. Module B illustrates a negative correlation between Pre-
votella copri and Ruminococcus gnavus—the dominant species in the corresponding module
post-intervention. In module C, Blautia producta, which had close associations with other
species at D0, displayed disrupted interactions by D12. Conversely, two feature species,
B. thetaiotaomicron and E. tayi, identified through feature selection in modules D and F, re-
established their interrelationships with other species post-intervention. B. thetaiotaomicron
exhibited a negative correlation with other anamorphic bacilli, including Bacteroides ovatus,
Bacteroides uniformis, and Baeteroides nordii. Meanwhile, E. tayi showed a positive correlation
with the weight loss-related species A. muciniphila. These findings suggest that following
the MDP-i-KD intervention, subjects’ gut microbiota symbiotic network shifted toward a
healthier and more intricate state.

3.5. MDP-i-KD Alters the Correlation between Intestinal Microbiota Abundance and Physiological
Indicators

Spearman correlation analysis was performed between body weight, BMI, waist cir-
cumference, hip circumference, waist-to-hip ratio, body fat, body fat percentage, visceral fat
area of obese subjects before and after the MDP-i-KD, and gut bacteria obtained by metage-
nomic sequencing. The results showed that Bacteroides intestinalis, Paraprevotella xylaniphila,
Alistipes putredinis, Parabacteroides goldsteinii, Clostridium disporicum, Eubacterium ramulus,
Blautia obeum, Ruminococcus torques, Coprococcus eutactus, Dorea longicatena, Fusicatenibacter
saccharivorans, R. bromii, and Oxalobacter formigenes were significantly and positively associ-
ated with BMI. P. xylaniphila, A. putredinis, C. disporicum, E. ramulus, B. obeum, R. torques,
C. eutactus, D. longicatena, F. saccharivorans, and O. formigenes were also significantly pos-
itively correlated with body weight, waist circumference, hip circumference, and other
indicators (Figure 4). The results showed that changes in gut microbiota were closely
related to the phenotypic symptoms observed in patients with obesity.
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3.6. The MDP-i-KD Changes the Gut Microbiota Profile of the Obese Subjects

The results of the differential analysis of metabolic pathways of gut microbiota showed
that before and after the multi-stage ketogenic diet intervention, the following metabolic
pathways were detected: secondary metabolite degradation, amino acid biosynthesis,
carbohydrate degradation, nucleotide synthesis, and aromatic compound biosynthesis
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of the gut microbiota in obese subjects. The results showed that ten metabolic pathways
were significantly different before and after the intervention (Figure 5). The relative abun-
dances of selenium-based amino acid biosynthesis (PWY-6936), lysine biosynthesis II
(PWY-2941), the superpathway of 5-aminoimidazole ribonucleotide biosynthesis (PWY-
6277), 5-aminoimidazole ribonucleotide biosynthesis II (PWY-6122), 5-aminoimidazole
ribonucleotide biosynthesis I (PWY-6121), starch degradation V (PWY-6737), chorismate
biosynthesis I (ARO-PWY), chorismate from 3-dehydroquinine (PWY-6163), and super-
channels for aromatic amino acid biosynthesis (COMPLETE-ARO-PWY) were significantly
reduced in the intestinal microbiota of post-intervention obese subjects. The relative abun-
dance of the mannitol cycle in the gut microbiota was significantly enhanced following the
intervention. These results suggest that multi-stage KD intervention alters the metabolic
pathways of the gut microbiota in individuals with obesity.

Nutrients 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

3.6. The MDP-i-KD Changes the Gut Microbiota Profile of the Obese Subjects 

The results of the differential analysis of metabolic pathways of gut microbiota showed 

that before and after the multi-stage ketogenic diet intervention, the following metabolic 

pathways were detected: secondary metabolite degradation, amino acid biosynthesis, car-

bohydrate degradation, nucleotide synthesis, and aromatic compound biosynthesis of the 

gut microbiota in obese subjects. The results showed that ten metabolic pathways were sig-

nificantly different before and after the intervention (Figure 5). The relative abundances of 

selenium-based amino acid biosynthesis (PWY-6936), lysine biosynthesis II (PWY-2941), the 

superpathway of 5-aminoimidazole ribonucleotide biosynthesis (PWY-6277), 5-aminoimid-

azole ribonucleotide biosynthesis II (PWY-6122), 5-aminoimidazole ribonucleotide biosyn-

thesis I (PWY-6121), starch degradation V (PWY-6737), chorismate biosynthesis I (ARO-

PWY), chorismate from 3-dehydroquinine (PWY-6163), and superchannels for aromatic 

amino acid biosynthesis (COMPLETE-ARO-PWY) were significantly reduced in the intesti-

nal microbiota of post-intervention obese subjects. The relative abundance of the mannitol 

cycle in the gut microbiota was significantly enhanced following the intervention. These re-

sults suggest that multi-stage KD intervention alters the metabolic pathways of the gut mi-

crobiota in individuals with obesity. 

 

Figure 5. The MDP-i-KD changes the gut microbiota functional characteristics of subjects with 

obesity (* p < 0.05). 

3.7. The MDP-i-KD alters Metabolic Pathways and Correlates with Physiological  

Indicators Studied 

Body weight, BMI, hip circumference, waist circumference, and waist-to-hip ratio of 

obese subjects before and after the MDP-i-KD intervention were analyzed using Spearman 

correlation analysis with metabolic pathways of the gut microbiota obtained by meta-

genomic sequencing. The results showed that the metabolic pathway of the gut microbiome 

could be analyzed using the Spearman test. The changes in the subjects were closely related 

to their obese phenotypic symptoms (Figure 6). Including amino acid biosynthesis, lipid 

biosynthesis, cofactor biosynthesis, nucleotide biosynthesis, carbohydrate degradation, pol-

yamine synthesis, aromatic compound degradation, aromatic compound biosynthesis, car-

bohydrate synthesis, cellular structure biosynthesis, and fermentation, a total of 93 meta-

bolic pathways in secondary metabolite biosynthesis, energy metabolism, and other path-

ways were significantly correlated with obesity epigenetic indicators. Among them, 5-ami-

noimidazole ribonucleotide biosynthesis I (PWY-6121), 5-aminoimidazole ribonucleotide 

biosynthesis II (PWY-6122), 5-aminoimidazole ribonucleotide biosynthesis super pathway 

(PWY-6277), synthesis of chorismate from 3-dehydroquinine (PWY-6163), starch degrada-

tion V (PWY-6737), superchannel for aromatic amino acid biosynthesis (COMPLETE-ARO-

PWY), and chorismate biosynthesis Synthetic I (ARO-PWY) were not only significantly pos-

itively correlated with BMI, but their relative abundance was significantly reduced after the 

intervention. Therefore, these seven metabolic pathways may play a vital role in reducing 

obesity after the MDP-i-KD intervention. 

Figure 5. The MDP-i-KD changes the gut microbiota functional characteristics of subjects with obesity
(* p < 0.05).

3.7. The MDP-i-KD Alters Metabolic Pathways and Correlates with Physiological Indicators Studied

Body weight, BMI, hip circumference, waist circumference, and waist-to-hip ratio of
obese subjects before and after the MDP-i-KD intervention were analyzed using Spearman
correlation analysis with metabolic pathways of the gut microbiota obtained by metage-
nomic sequencing. The results showed that the metabolic pathway of the gut microbiome
could be analyzed using the Spearman test. The changes in the subjects were closely related
to their obese phenotypic symptoms (Figure 6). Including amino acid biosynthesis, lipid
biosynthesis, cofactor biosynthesis, nucleotide biosynthesis, carbohydrate degradation,
polyamine synthesis, aromatic compound degradation, aromatic compound biosynthe-
sis, carbohydrate synthesis, cellular structure biosynthesis, and fermentation, a total of
93 metabolic pathways in secondary metabolite biosynthesis, energy metabolism, and
other pathways were significantly correlated with obesity epigenetic indicators. Among
them, 5-aminoimidazole ribonucleotide biosynthesis I (PWY-6121), 5-aminoimidazole ri-
bonucleotide biosynthesis II (PWY-6122), 5-aminoimidazole ribonucleotide biosynthesis
super pathway (PWY-6277), synthesis of chorismate from 3-dehydroquinine (PWY-6163),
starch degradation V (PWY-6737), superchannel for aromatic amino acid biosynthesis
(COMPLETE-ARO-PWY), and chorismate biosynthesis Synthetic I (ARO-PWY) were not
only significantly positively correlated with BMI, but their relative abundance was signifi-
cantly reduced after the intervention. Therefore, these seven metabolic pathways may play
a vital role in reducing obesity after the MDP-i-KD intervention.
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Figure 6. Correlation between the metabolic pathways of the gut microbiota and physiological
indicators studied (*** p < 0.001; ** p < 0.01; * p < 0.05).

3.8. Species Contribution of the Metabolic Pathways of the Gut Microbiota
3.8.1. Analysis of Species Contribution to Key Metabolic Pathways

An analysis of the metabolic pathways significantly positively correlated with BMI,
with significant differences after the MDP-i-KD, including 5-aminoimidazole ribonu-
cleotide biosynthesis I (PWY-6121), 5-aminoimidazole ribonucleotide biosynthesis I (PWY-
6121), 5-aminoimidazole ribonucleotide biosynthesis II (PWY-6122), Super pathway for
5-aminoimidazole ribonucleotide biosynthesis (PWY-6277), synthesis of chorismate from
3-dehydroquinine (PWY-6163), starch degradation V (PWY-6737), superchannel for aro-
matic amino acid biosynthesis (COMPLETE-ARO-PWY), and chorismate biosynthesis I
(ARO-PWY), was performed. Bacteria that have been reported to play an important role
in these metabolic pathways were screened by calculating the contribution of species to
the metabolic pathways, and the results are shown in Figure 7. R. torques makes a high
contribution to the PWY-6121, PWY-6122, PWY-6277, ARO-PWY, PWY-6163, COMPLETE-
ARO-PWY, and PWY-6737 metabolic pathways. After the MDP-i-KD and weight loss, the
relative contribution of R. torques to key metabolic pathways was reduced, and the relative
abundances of the seven key metabolic pathways were significantly reduced. Therefore,
R. torques was significantly positively correlated with BMI, possibly by altering the key
metabolic pathways in individuals with obesity. Eubacterium hallii contributed to a higher
degree to the PWY-6163 metabolic pathway. After the intervention, the relative abundance
of E. hallii, its relative contribution to PWY-6163, and the relative abundance of PWY-6163
significantly decreased. B. obeum has a high contribution to the ARO-PWY, PWY-6163,
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and COMPLETE-ARO-PWY metabolic pathways. The relative abundance of Blautia is
highly correlated with obesity and thus diminishes with the reduction in obesity follow-
ing the MDP-i-KD. B. obeum was significantly positively correlated with multiple obesity
phenotypic indicators. After the MDP-i-KD and weight loss, the relative contributions
of B. obeum to ARO-PWY, PWY-6163, and COMPLETE-ARO-PWY metabolic pathways
decreased. We speculate that the MDP-i-KD can improve obesity symptoms by altering the
relative abundance and metabolic function of B. obeum and E. hallii.
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3.8.2. B. obeum and R. torques Are Involved in the Regulation of Various Metabolic
Activities in the Gut of Subjects with Obesity

A comparative analysis of the metabolic pathways with a relatively high contribution
of B. obeum before and after the intervention revealed that B. obeum had a high relative contri-
bution in ARO-PWY, PWY-6163, COMPLETE-ARO-PWY, and 21 other metabolic pathways
(Supplementary Material Table S3). Among them, B. obeum can degrade formaldehyde
assimilation II (hip cycle) (PWY-1861), guanosine nucleotide degradation superchannel
(PWY-6595), and guanosine nucleotide degradation II (PWY-6606), which had the highest
relative contribution. The analysis of the contributing pathways of R. torques found that
in addition to the 7 key metabolic pathways, the relative contribution of bacterial species
was higher, and the other 56 metabolic pathways had higher relative contributions (Sup-
plementary Material Table S3). The above results show that B. obeum and R. torques or
their metabolites can participate in a variety of metabolic activities in the guts of obese and
normal-weight individuals.
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4. Discussion

A person’s diet is considered a major determinant of the diversity, ecology, and
functionality of their gut microbiota, with implications for health. Adaptation to different
dietary patterns dramatically affects the onset and continuation of obesity. Although a
ketogenic diet has been introduced as an effective means of weight loss, the mechanisms
underlying its ameliorative effects have not yet been fully explored. Previous studies
have demonstrated the potential of the ketogenic diet (KD) to modify the diversity and
species composition of the gut microbiota in individuals with various health conditions,
including obesity [26], type 2 diabetes [42], cancer [43], epilepsy [44–46], and cognitive
impairment [47,48], and Alzheimer’s disease [49], as well as healthy individuals [50].
However, the majority of these investigations have predominantly centered on genus-
level discussions of microbial composition, often overlooking the examination of the
correlation between individual microbial species and their functional alterations in response
to obesity and dietary patterns. Additionally, different types of ketogenic diets appear
to exert varying effects on the gut microbiota species among subjects, highlighting the
need for tailored analyses in specific contexts. In this trial, the effect of an MDP-i-KD
intervention on the intestinal flora of subjects was analyzed using shotgun metagenomic
sequencing. We observed significant changes in the gut microbiota composition, bacterial
interaction networks, and metabolic function as a result of the multiphase dietary regimen;
therefore, certain species related to weight loss were identified. Our study provides in-
depth information on the effect of dietary interventions on the intestinal microbiota of
individuals with obesity. We investigated not only the fecal microbiota of subjects before
and after the intervention but also assessed whether any gut microbiota changes were
associated with body weight loss. Therefore, our findings help clarify the interplay between
obesity, diet, and the gut microbiota in human subjects.

Recent meta-analyses have shown that ketogenic diets can serve as a helpful tool
for treating obesity by reducing body weight, waist circumference, and body mass index
(BMI) [23]. Nonetheless, researchers recommend that a KD should be followed with caution,
as its treatment of obesity may be accompanied by adverse conditions, such as dehydration,
hypoproteinemia, poor adherence, and hair loss [51]. In contrast, a multi-stage dietary
therapy program that includes the gradual reintroduction of carbohydrates is an efficient
and safe strategy to combat obesity [52]. Therefore, the MDP-i-KD was developed in order
to counteract the nutritional deficiency and low compliance of people with obesity, which
may be due to KD-only interventions. It was essential to determine which species-specific
alterations were caused by the MDP-i-KD intervention that led to reduced body weight. We
performed shotgun metagenomic sequencing of treated feces before and after the interven-
tion. Our results demonstrate a reduction in the alpha diversity of the gut microbiota in the
intervention group, which may be attributed to the fact that carbohydrates serve as the fun-
damental substrate for microbial energy generation through decomposition [21]. A lower
carbohydrate content in the KD could lead to an overall decrease in microbial diversity [53].
Machine learning methods identified seven crucial species associated with MDP-i-KD
intervention: P. distasonis, W. cibaria, E. tayi, B. vulgatus, O. sp_57_20, B. thetaiotaomicron, and
the E. cloacae complex. Among them, P. distasonis played a dominant role in distinguishing
between pre-intervention and post-intervention states. Lefse analyses further confirmed a
significant enrichment of P. distasonis post-intervention. A previous study in Mexico found
that obese children and those suffering from metabolic syndrome had a reduced abun-
dance of P. distasonis in their gut when compared to healthy children [37]. Similar trends
were observed in a three-week intermittent fasting intervention for obesity. P. distasonis
and B. thetaiotaomicron were significantly enriched after the intervention and negatively
correlated with obesity-related parameters [54]. Therefore, the above findings also support
the hypothesis that the decreased abundance of P. distasonis observed in our study may
be related to metabolic changes related to weight loss after the intervention. Wang et al.
demonstrated that live P. distasonis treatment attenuated weight gain in ob/ob and HFD-fed
mice. This effect might be attributed to P. distasonis’s ability to convert primary bile acids
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into secondary bile acids (LCA and UDCA) and produce succinic acid [55]. Therefore, the
above findings also support the hypothesis that the decreased abundance of P. distasonis
observed in our study may be related to metabolic changes linked to weight loss after the
intervention. Additionally, although B. vulgatus and B. thetaiotaomicron showed only an
upward trend after the intervention without significant differences, they were still identi-
fied as important traits by machine learning methods, considering the complex interactions
between microorganisms. B. vulgatus has been shown to have a cross-feeding relationship
with the weight loss-associated species A. muciniphila [40,56,57]. Moreover, B. vulgatus also
exhibits a cross-feeding relationship with B. ovatus, which we found to be significantly en-
riched post-intervention in the Lefse analysis [58]. As for B. ovatus, the trend of a childhood
obesity study in Malaysia is consistent with our results, with a higher relative abundance
of B. ovatus in the gut of normal-weight children than in obese children [59]. Moreover,
B. thetaiotaomicron exhibited consistent results, with reduced abundance in individuals with
obesity [41] and increased abundance in dietary interventions for weight loss [54]. We
found that the MDP-i-KD intervention can effectively reduce A. odontolyticus, which causes
meningitis and cervical abscess [60], indicating that the MDP-i-KD can reduce the relative
abundance of harmful bacteria in the gut. These findings assure that strategies targeting
the gut microbiota to treat obesity are effective. Although these differential species’ physio-
logical function or biological behavior is not yet clear, these signatures are still worthy of
attention as fine-grained gut microbiome features.

The gut microbiota is one of the most complex microbial ecosystems known in which a
plethora of microbial interactions occur. Currently, most of the knowledge on the role of diet
in ameliorating several metabolic disorders is limited to studying changes in the abundance
of different microbial groups rather than focusing on microbial interspecific interactions [61].
Co-occurrence networks were constructed in order to search for interactions between
species using metagenomic sequencing. We found significant changes in the intestinal flora
co-occurrence network before and after the intervention. The co-occurrence network at
the species level appeared to become more concise after the intervention, showing that the
number of subclusters decreased with weight loss, which is consistent with our previous
analysis of 16S rRNA. However, it is worth noting that the number of nodes in the remaining
four main modules increased after the MDP-i-KD intervention, suggesting that the species-
level interactions of the microbiota within each module are more complex and concentrated.
Considering this, in this study, the interaction network at the microbial-species level was
analyzed by metagenomic analysis, as when compared with the genus level obtained by 16S
rRNA analysis, the degree of interaction between bacterial species must be more complex.
In addition, pathogenic bacteria, such as pro-inflammatory and even cancer-promoting
Streptococcus infantis, disappeared in the co-occurrence network after the intervention,
suggesting they were less abundant and interacted with other species. In the D12 network,
a reciprocal inhibition relationship was observed between P. copri and R. gnavus. Recent
studies have indicated a significant enrichment of R. gnavus in insulin-resistant and obese
subjects, with a notable association with low cognitive traits [62]. On the other hand, P. copri
has been implicated in triggering host inflammatory responses and exhibits a significant
correlation with adipose accumulation in pigs [63]. Several population cohort studies have
indicated that B. obeum is associated with obesity [41]. The detailed parameters of the D12
network map show that the interaction of B. obeum with other species is lower than that
on D0, which seems to further explain that the influence of B. obeum in the intestine is also
reduced with weight loss. Although the interaction between microbiota species remains
unclear, further studies are still needed. Overall, the above phenomena suggest that the gut
flora interactions of obese participants are reorganized into a healthier state after weight
loss. Our results indicate that microbial interactions in KD–obesity interactions should be
considered in addition to changes in microbial abundance levels. Through co-occurrence
network analysis, we have identified the impact of KD interventions on the interactions
between several species that are closely associated with obesity. These species have the
potential to be targeted for regulating gut microecology in obesity.
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Changes in the gut microbiota are strongly associated with phenotypic symptoms in
people with obesity. Previously, using AGP big data analysis, dietary interventions affecting
genus-level gut microbiota, and other results, Blautia was consistently screened as a genus
highly correlated with obesity of the gut microbiota in people with obesity. Correlation
analysis between obesity phenotype indicators and intestinal bacteria showed that Blautia
obeum was positively correlated with BMI, waist circumference, body weight, body fat,
hip circumference, waist-to-hip ratio, and visceral fat area. B. hydrogenotorophica was
significantly positively correlated with the waist-to-hip ratio. Furthermore, our findings are
consistent with those of published studies. Liu et al. conducted a metagenomic association
analysis and serum metabolomic analysis of obese and non-obese Chinese populations
and identified a significant positive correlation between B. obeum and BMI [41]. Kasai et al.
studied the species composition of the gut microbiota of obese and non-obese Japanese
people and found that the relative abundance of B. hydrogenotorophica and B. obeum was
higher in the intestines of individuals with obesity [64]. Therefore, B. obeum is a key bacterial
species in the gut of individuals with obesity and may serve as a target for probiotics or
dietary interventions for obesity. In addition, the results of the metagenomic analysis
before and after intervention showed that R. bromii, R. torques, D. longicatena, and E. ramulus
were significantly positively correlated with BMI. D. longicatena was significantly increased
in the gut of the obese Chinese population in previous studies, which is consistent with
our findings. R. torques was also confirmed to be enriched in the gut of individuals with
obesity. Rosés et al. studied the effect of the Mediterranean diet on the gut microbiota
of normal-weight, overweight, and obese individuals, and the results showed that the
Mediterranean diet was associated with an increase in the production of butyrate and
abundance of R. bromii [65].

We analyzed the differences seen in the metabolic pathways of the intestinal micro-
biota before and after the intervention and combined the correlation analysis between
obesity-related physiological indicators and metabolic pathways to explain the mecha-
nisms underlying weight loss. We observed that ten metabolic pathways were significantly
altered in the intestinal microbiota of obese participants, including amino acid biosynthesis,
nucleotide synthesis, secondary metabolite degradation, aromatic compound biosynthesis,
and carbohydrate degradation. Among differential metabolic pathways, the relative abun-
dance of the mannitol cycle was significantly increased after the intervention, suggesting
that the ketogenic diet can promote its synthesis and metabolism. Mannitol, a known
diuretic that rapidly excretes water from tissues, has not been shown to correlate with any
obesity-related physiological markers. Therefore, the reasons for weight loss remain to be
further explored. The graph (heatmap) shows that all nucleotide biosynthesis pathways
were significantly positively correlated with BMI. Following KD intervention, a substan-
tial decrease was observed in the relative abundance of 5-aminoimidazole ribonucleotide
biosynthesis pathways I (PWY-6121) and II (PWY-6122) and the super pathway (PWY-6277).
Moreover, 5-Aminoimidazole ribonucleotide is a critical intermediary in the biosynthesis of
purine nucleotides, and the attenuation of its biosynthesis potentially translates into dimin-
ished purine production, thereby mitigating the accumulation of uric acid. Notably, serum
uric acid levels have been positively correlated with BMI across various studies [66–68].
Research has observed that umami induces obesity and metabolic syndrome through the
purine nucleotide degradation pathway [69]. Intriguingly, specific purine metabolites
such as inosine, hypoxanthine, and uric acid have been implicated in heightened caloric
intake and weight gain, even in the absence of monosodium glutamate intervention [69].
In addition, 3-dehydroquinine synthesis chorismate (PWY-6163), starch degradation V
(PWY-6737), aromatic amino acid biosynthesis superchannel (COMPLETE-ARO-PWY), and
chorismate biosynthesis I (ARO-PWY) were consistent with the trend in the nucleotide
biosynthesis pathway, which was not only positively correlated with BMI but also signifi-
cantly decreased in relative abundance after the intervention. These findings are consistent
with the well-established microbial functional changes associated with obesity [13]. In
a metagenomic study conducted on an obese population, it was observed that the gut
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microbiota in obese individuals may demonstrate elevated biosynthesis of aromatic amino
acids and branched-chain amino acids, along with an enhanced capacity for carbohydrate
utilization in comparison to lean controls [41]. The serum metabolomic profiles of pregnant
women who had undergone malabsorptive bariatric surgery indicated reduced circulat-
ing levels of branched-chain and aromatic amino acids [70]. Additionally, a three-month
supplementation with live or pasteurized A. muciniphila led to weight loss and the down-
regulation of serum metabolomic pathways associated with tyrosine, phenylalanine, and
tryptophan metabolism in obese subjects [71]. These findings suggest that the MDP-i-KD
intervention may effectively diminish the relative prevalence of purine synthesis pathways,
the aromatic amino acid synthesis pathway, and the starch degradation pathway within the
gut microbiota, thereby curtailing the generation of purine compounds, aromatic amino
acids, and their metabolites. This reduction is presumed to exert a positive influence on
ameliorating obesity and metabolic syndrome. Nonetheless, comprehensive investigations
are warranted to elucidate the precise mechanisms and biological ramifications of this
association. It is worth noting that the contribution of these seven metabolic pathways of
R. torques is higher, and after the multi-stage ketogenic diet intervention and weight loss,
the relative contribution of R. torques to the seven key metabolic pathways was reduced.
Therefore, R. torques was significantly positively correlated with BMI, possibly by altering
the key metabolic pathways in individuals with obesity. B. obeum has a high contribution
to the ARO-PWY, PWY-6163, and COMPLETE-ARO-PWY metabolic pathways, and after
multi-stage ketogenic diet intervention and weight loss, the relative contribution of B. obeum
to these three metabolic pathways was reduced. Blautia is a genus that is significantly associ-
ated with obesity and is significantly positively correlated with multiple obesity phenotypic
indicators. Therefore, we speculated that MDP-i-KD can improve obesity symptoms by
altering the relative abundance and metabolic functions of B. obeum and R. torques. As
key bacteria, B. obeum and R. torques contributed to the metabolic pathway analysis results
before and after the intervention, showing that they or their metabolites could participate
in various metabolic activities in the intestines of obese and normal-weight individuals.
Therefore, B. obeum and R. torques may be key targets for obesity intervention based on gut
bacteria.

5. Conclusions

An increasing body of evidence suggests the relevance of the gut microbiota in the
pathophysiology of diet-related metabolic disorders such as obesity. Given the intricate
metabolic interactions between the host and its microbial community, the causative relation-
ship between the gut microbiota and obesity remains elusive. Our study underscores the
usefulness of the analyses of the taxa and functional groups of microbes to improve our un-
derstanding of the interactions among diet, gut microbiota, and weight loss. Parabacteroides
distasonis exhibited the most robust response to the multiphase modified ketogenic diet
(MDP-i-KD) intervention, suggesting a potential predominant role in facilitating weight
loss, yet the precise mechanisms warrant further investigation. Network analysis revealed
a shift in the interactions among gut microbiota toward a healthier state post-weight loss,
characterized by positive associations among weight-loss-related species and inhibitory
relationships among obesity-associated species after the intervention. Microbial metabolic
functions indicated that the gut microbiota may promote weight loss by reducing purine
compounds, aromatic amino acid generation, and carbohydrate utilization. Notably, species
B. obeum and R. torques, positively correlated with BMI, contributed significantly to these
pathways, with reduced relative contributions post-intervention, highlighting their po-
tential as key targets for future obesity interventions. In summary, this work extends
our previous findings [28], providing insights into future microbiome-based weight man-
agement interventions, facilitating personalized obesity treatment, and better achieving
long-term weight management goals. Nevertheless, further research is required to delve
into the biological mechanisms of these specific microbial signatures and their impact
on obesity.
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